REFERENCE:

	•	۲
•	-	>
_	•	Ă
•	•	j
	•	۲
(7	•
•	_	•
C	1	_
_	V	7
þ	4	4
ľ	•	•
-	•	101:17:/: 1011
C	•	•
C	۰	۲
)
ř	_	
•	4	1
۴	-	1.
١	_	
		١

STATE	STATE PROJECT REFERENCE NO.	SHEET NO.	TOTAL SHEETS
N.C.	SF-280100	1	33

STATE OF NORTH CAROLINA

DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

STRUCTURE SUBSURFACE INVESTIGATION

COUNTY DAVIDSON

PROJECT DESCRIPTION BRIDGE NO. 100 ON SR 1810

(CLODFELTER RD.) OVER ABBOTTS CREEK BETWEEN SR 1817 AND SR 1798

SITE DESCRIPTION $\underline{STA.15+99.50}$ -L-

CONTENTS

SHEET NO.	DESCRIPTION
1	TITLE SHEET
2, 2A	LEGEND (SOIL & ROCK)
2B, 2C	SUPPLEMENTAL LEGEND (GSI)
3	SITE PLAN
4-5	PROFILE(S)
6-9	CROSS SECTION(S)
10-21	BORE LOG(S) & CORE REPORT(S)
22-23	SOIL TEST RESULTS
24-25	ROCK TEST RESULTS
26-29	CORE PHOTOGRAPH(S)
30	SITE PHOTOGRAPH(S)

CAUTION NOTICE

THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT 1(99) 707-850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT.

CEMERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BORCHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU (INP-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOL. THE OBSERVED WATER LEVELS OR SOIL MOISTURE CONDITIONS INDICATED IN THE SUBSURFACE OR INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY VARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS.

THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT. FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DOES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEM NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED TO THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OR FOR AN EXTENSION OF TIME FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS ENCOUNTERED AT THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION.

- NOTES:

 1. THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N. C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT.

 2. BY HAWING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE.

PERSONNEL

B. SMITH, PG

B. WORLEY, PG

M. SHIPMAN, EI

L. GONZALEZ

D. SUTTON

INVESTIGATED BY B. SMITH, PG

DRAWN BY <u>B.</u> Smith, PG

CHECKED BY <u>B.</u> WORLEY, PG

SUBMITTED BY B. SMITH, PG

DATE __MAY, 2018

Prepared in the Office of:

NC FIRM LICENSE No: P-0339 and C-487 504 Meadowlands Drive Hillsborough, NC 27278 (919) 732-3883 (919) 732-6676 (FAX)

DOCUMENT NOT CONSIDERED FINAL UNLESS ALL SIGNATURES COMPLETED

PROJECT REFERENCE NO.	SHEET NO.
SF-280100	2

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 1 OF 2)

											(PA	4GE	I OF 2)		
					SOI	L DE	SCRI	PTI	ON				GRADATION		
BE PENE ACCORD	SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DISSOS, SOIL CLASSIFICATION IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOSTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH							D.OR R ANO TO T	WEATHERED YIELD LE 206, ASTM	6S THAN 101 D1586). SOI	Ø BLOWS PI L CLASSIFI	WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. UNIFORMLY GRADED - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. GAP-GRADED - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES.			
										ER PERTINE			ANGULARITY OF GRAINS		
		F,GRAY,	SILTY	CLAY, MOI:	ST WITI	H INTER	BEDDED	FINE	SAND LAYE	RS,HIGHLY PL	ASTIC, A-7-6		THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED.		
GENERAL				<u>LUENI</u> MATERIAL		ND AF			LASSIF MATERIALS	ICATION			MINERALOGICAL COMPOSITION		
CLASS. GROUP	A-1		% PAS	SING #200	8) 4-2				SING *200) A-6 A-7	A-1, A-2	A-4, A-5	RIALS	MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAQLIN, ETC. ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE.		
CLASS.	A-1-a A-1		A-2	-4 A-2-5			SS18883801 *		A-7-5. A-7-6	A-3	A-6, A-7	************	COMPRESSIBILITY SLIGHTLY COMPRESSIBLE LL < 31		
SYMBOL	00000000				7			1,7 1					MODERATELY COMPRESSIBLE LL = 31 - 50 HIGHLY COMPRESSIBLE LL > 50		
% PASSING *10	50 MX									GRANULAR	SILT-	MUCK,	PERCENTAGE OF MATERIAL		
*40 *200	30 MX 50			MX 35 M	x 35 M)	35 MX	36 MN	36 MN	36 MN 36 M	SOILS	CLAY SOILS	PEAT	GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL		
MATERIAL PASSING *40													TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20%		
LL PI	- 6 MX	– NP							40 MX 41 MN		S WITH LE OR	HIGHLY	MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE		
GROUP INDEX	вмх	NP	שו	mx שון אייי מ	+	-			11 MN 11 MN 16 MX NO MX		erate NTS of	ORGANIC	GROUND WATER		
USUAL TYPES	STONE FRAM	GS. FINE	+	SILTY	-		SILT		CLAYEY	ORC	GANIC TTER	SOILS	✓ WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING		
OF MAJOR MATERIALS	GRAVEL, AN SAND	ND SAN		GRAVEL			SOIL		SOILS	MH.	IIEN		lacktright STATIC WATER LEVEL AFTER 24 HOURS		
GEN. RATING		FYCE	LLENT	TO G000	1			FAIR TO	n POOR	FAIR TO	POOR	UNSUITABLE			
AS SUBGRADE									6 SUBGROUP I	POOR	1 0011	GNOOTTABLE	O-MA- SPRING OR SEEP		
		rı Ut							SENES				MISCELLANEOUS SYMBOLS		
PRIMARY	SOIL TYP	E		PACTNE DNSISTE					STANDARD RESISTENC ALUE)		GE OF UNC PRESSIVE S (TONS/F)	STRENGTH	ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION FROCK STRUCTURES		
GENERA	ALLY		V	ERY LO				<					SOIL SYMBOL SPET DATE TEST BORING SLOPE INDICATOR INSTALLATION		
GRANUL MATERI	GRANULAR LUUSE 4 10 10 MATERIAL MEDIUM DENSE 10 TO 30 N/A MATERIAL DENGE 20 TO 50			ARTIFICIAL FILL (AF) OTHER THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROME TEST TEST											
(NUN-CI	DHESIVE)			ERY DE				>							
GENERA	ALLY		٧	ERY SO SOFT				2 T	2 0 4		< 0.25 0.25 TO		INFERRED SOIL BOUNDARY - CORE BORING SOUNDING ROD TEST BORING		
SILT-C MATERI			ME	DIUM S STIFF				4 T			0.5 TO 1		WITH CORE		
(COHES			٧	ERY ST HARD	IFF			15 T	0 30		2 TO 4		TTTTT ALLUVIAL SOIL BOUNDARY A PIEZOMETER SPT N-VALUE INSTALLATION SPT N-VALUE		
					XTUF	RE OF	R GR		SIZE				RECOMMENDATION SYMBOLS		
U.S. STD. SI	EVE SIZE	:		4		10	40		60 20	Ø 27Ø			UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION -		
OPENING (M		COBBL		4.7		2.00	0.42 COARS SAND	Ε	0.25 0.0 FIN	E	SILT	CLAY	UNSUITABLE WASTE UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL UNDERCUT UNDERCUT UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF EMBANKMENT OR BACKFILL		
(BLDR.	(,	(COB.)	'	(GF	₹.)	(CSE. S		(F S		(SL.)	(CL.)	ABBREVIATIONS		
GRAIN MI SIZE IN			75 3			2.0		(0. 25	0.05	0.005	5	AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED		
312L IN	12	SOII		NICT	HPF		וססר	1 ^ T	ווא סר	TERMS			CL CLAY MOD MODERATELY γ - UNIT WEIGHT		
SOIL	MOISTUR			10121		D MOIS		$\overline{}$			ICTURE OF	CCDIDTION	CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{ m d}$ - DRY UNIT WEIGHT CSE COARSE ORG ORGANIC		
	TERBERG				DE	SCRIPT	ION		OUIDE FUR	FIELD MOI	ISTURE DES	OCHIL LINN	DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST <u>SAMPLE ABBREVIATIONS</u> DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK		
						TURATE	D -			IQUID; VERY			e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE		
DI ASTIC T	. L100	ID LIM	ΙT	-	,					ON			FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK		
PLASTIC RANGE < (PI) PL	PI AS	STIC LI	міт		- WE	T - (W)			REQUIRES)	FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL FRAGS FRAGMENTS & M - MOISTURE CONTENT CBR - CALIFORNIA BEARING HI HIGHLY V - VERY RATIO		
					_ MC	IST -	(M)		SOL ID- AT	OR NEAR O	DTIMUM M	TISTUPE	EQUIPMENT USED ON SUBJECT PROJECT		
ON SL	1 _ OPTI SHRI	MUM M	IOISTI LIMI	URE T	1-10				225101 11	o HEMIN UI		J.J. O.NL	DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE:		
					- DR	Y - (D)				ADDITIONAL TIMUM MOIS		0	CME-45C CAY BITS X AUTOMATIC MANUAL G* CONTINUOUS FLIGHT AUGER CORE SIZE:		
						PLAS	TICI	ΤΥ					X 2.25* HOLLOW AUGERS		
					PL	.ASTICI		DEX (PI)	D	RY STRENC		X CME-550X HARD FACED FINGER BITS X -N Q2		
	N PLASTIO IGHTLY PO						Ø-5 6-15				VERY LOW SLIGHT	N	VANE SHEAR TEST TUNG,-CARBIDE INSERTS HAND TOOLS:		
	DERATELY SHLY PLAS		TIC				16-25 OR MO	RE			MEDIUM HIGH		X CASING X W/ ADVANCER POST HOLE DIGGER		
- · · · ·							LOR						PORTABLE HOIST TRICONE STEEL TEETH HAND AUGER		
	T101/5				on -								TRICONE TUNGCARB. SOUNDING ROD CORE BIT VANE SHEAR TEST		
), YELLOW-B DESCRIBE /			CORE BIT VANE SHEAR TEST		

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS (PAGE 2 OF 2)

ROCK DESCRIPTION TERMS AND DEFINITIONS HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED. AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN I.FOOT PER 60 BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK.

ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. AQUIFER - A WATER BEARING FORMATION OR STRATA. ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES 3 100 BLOWS PER FOOT IF TESTED. ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, GNEISS, GABBRO, SCHIST, ETC.

FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC.

COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD SPT REFUSAL. ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED SHELL BEDS, ETC. CRYSTALLINE ROCK (CR) CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM OF SLOPE. NON-CRYSTALLINE ROCK (NCR) COASTAL PLAIN SEDIMENTARY ROCK (CP) CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT WEATHERING ROCKS OR CUTS MASSIVE ROCK. FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING, ROCK RINGS UNDER DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE HORIZONTAL. VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, $\underline{\text{DIP DIRECTION (DIP AZIMUTH)}}$ - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF OF A CRYSTALLINE NATURE. (V SLI.) FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO SLIGHT SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. 1 INCH, OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. (SLI.) FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN $\frac{\text{FLOAT}}{\text{PARENT}} - \text{ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM PARENT MATERIAL.}$ GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY, ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. WITH FRESH ROCK. FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD. ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION. ROCK SHOWS SEVERE LOSS OF STRENGTH MODERATELY SEVERE (MOD, SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK. JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. IF TESTED, WOULD YIELD SPT REFUSAL $\underline{\text{LEDGE}}$ - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO ITS LATERAL EXTENT. ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT SEVERE REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. (SEV.) LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS, MOTTLING IN SOILS IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE OF AN INTERVENING IMPERVINIS STRATIM VERY SEVERE AN INTERVENING IMPERVIOUS STRATUM. (V SEV.) VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND COMPLETE ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF SCATTERED CONCENTRATIONS, QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS, SAPROLITE IS ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. <u>SAPROLITE (SAP.)</u> - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT ROCK. ROCK HARDNESS CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES VERY HARD <u>SILL</u> - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED HARD TO DETACH HAND SPECIMEN. SLICKENSIDE - I - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF A 140 LB, HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER, SPT REFUSAL IS PENETRATION EQUAL BY MODERATE BLOWS. CAN BE GROOVED OR GOLIGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFF OR PICK POINT. MEDILIM CAN BE EXCAVATED IN SMALL CHIPS TO PEICES I INCH MAXIMUM SIZE BY HARD BLOWS OF THE HARD TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. POINT OF A GEOLOGIST'S PICK. CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. SOFT STRATA ROCK QUALITY DESIGNATION (SROD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL. TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE, CAN BE SCRATCHED READILY B FINGERNAIL. TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. FRACTURE SPACING BEDDING BENCH MARK: BL-2 (N: 789005 E: 1654949) TERM TERM THICKNESS SPACING VERY WIDE MORE THAN 10 FEET 3 TO 10 FEET VERY THICKLY BEDDED THICKLY BEDDED 4 FEET 1.5 - 4 FEET 0.16 - 1.5 FEET ELEVATION: 690.91 FEET WIDE THINLY BEDDED
VERY THINLY BEDDED
THICKLY LAMINATED MODERATELY CLOSE 1 TO 3 FEET 0.03 - 0.16 FEET 0.008 - 0.03 FEET VERY CLOSE LESS THAN 0.16 FEET FIAD = FILLED IMMEDIATELY AFTER DRILLING THINLY LAMINATED < 0.008 FEET INDURATION

FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC.

RUBBING WITH FINGER EREES NUMEROUS GRAINS. GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE.

GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; BREAKS EASILY WHEN HIT WITH HAMMER. MODERATELY INDURATED

GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE: INDURATED

DIFFICULT TO BREAK WITH HAMMER.

SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE: EXTREMELY INDURATED

SAMPLE BREAKS ACROSS GRAINS.

DATE: 8-15-14

SF-280100 **2B**

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SUPPLEMENTAL LEGEND GEOLOGICAL STRENGTH INDEX (GSL) TARLES

SUPPLEMENTAL LEGEND, GEOLOG FROM AASHTO LRFD BRIDGE L AASHTO LRFD Figure 10.4.6.4-1 — Determination of GSI for Joint	DES.	IGN SPE	CIFICATIO	ONS (PAC	I) TABLE GE 1 OF	S 2)
GEOLOGICAL STRENGTH INDEX (GSI) FOR JOINTED ROCKS (Hoek and Marinos, 2000) From the lithology, structure and surface conditions of the discontinuities, estimate the average value of GSI. Do not try to be too precise. Quoting a range from 33 to 37 is more realistic than stating that GSI = 35. Note that the table does not apply to structurally controlled failures. Where weak planar structural planes are present in an unfavorable orientation with respect to the excavation face, these will dominate the rock mass behaviour. The shear strength of surfaces in rocks that are prone to deterioration as a result of changes in moisture content will be reduced if water is present. When working with rocks in the fair to very poor categories, a shift to the right may be made for wet conditions. Water pressure is dealt with by effective stress analysis. STRUCTURE	SURFACE CONDITIONS	VERY GOOD Very rough, fresh unweathered surfaces	COOD Sough, slightly weathered, iron stained Sourfaces	FAIR Smooth, moderately weathered and altered surfaces	POOR Slickensided, highly weathered surfaces with compact coatings or fillings or angular fragments	VERY POOR Slickensided, highly weathered surfaces with soft clay coatings or fillings
		DEC	LEHOING SI	JAPHUE GUP		
INTACT OR MASSIVE - intact rock specimens or massive in situ rock with few widely spaced discontinuities	CES	90			N/A	N/A
BLOCKY - well interlocked undisturbed rock mass consisting of cubical blocks formed by three intersecting discontinuity sets	OF ROCK PIECES		70 60			
VERY BLOCKY - interlocked, partially disturbed mass with multi-faceted angular blocks formed by 4 or more joint sets	RLOCKING O		5	60		
BLOCKY/DISTURBED/SEAMY - folded with angular blocks formed by many intersecting discontinuity sets. Persistence of bedding planes or schistosity	INTE			40	30	
DISINTEGRATED - poorly inter- locked, heavily broken rock mass with mixture of angular and rounded rock pieces	DECREASING				20	
LAMINATED/SHEARED - Lack of blockiness due to close spacing of weak schistosity or shear planes	\\	N/A	N/A			10

PROJECT REFERENCE NO.	SHEET NO.
SF-280100	2C

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT

SUBSURFACE INVESTIGATION

SUPPLEMENTAL LEGEND, GEOLOGICAL STRENGTH INDEX (GSI) TABLES FROM AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS (PAGE 2 OF 2)

FROM AASHTO LRFD BRIDGE DESIGN AASHTO LRFD Figure 10.4.6.4-2 — Determination of GSI for Tectonically Def			•		•
GSI FOR HETEROGENEOUS ROCK MASSES SUCH AS FLYSCH (Marinos.P and Hoek E., 2000)					
From a description of the lithology, structure and surface conditions (particularly of the bedding planes), choose a box in the chart. Locate the position in the box that corresponds to the condition of the discontinuities and estimate the average value of GSI from the contours. Do not attempt to be too precise. Quoting a range from 33 to 37 is more realistic than giving GSI = 35. Note that the Hoek-Brown criterion does not apply to structurally controlled failures. Where unfavourably oriented continuous weak planar discontinuities are present, these will dominate the behaviour of the rock mass. The strength of some rock masses is reduced by the presence of groundwater and this can be allowed for by a slight shift to the right in the columns for fair, poor and very poor conditions. Water pressure does not change the value of GSI and it is dealt with by using effective stress analysis.	VERY GOOD - Very Rough, fresh unweathered surfaces	GOOD - Rough, slightly weathered surfaces	FAIR - Smooth, moderately weathered and altered surfaces	POOR - Very smooth, occasionally slickensided surfaces with compact coatings or fillings with angular fragments	VERY POOR - Very smooth, slicken- sided or highly weathered surfaces with soft clay coatings or fillings
COMPOSITION AND STRUCTURE		/ /		, ,	, ,
A. Thick bedded, very blocky sandstone The effect of pelitic coatings on the bedding planes is minimized by the confinement of the rock mass. In shallow tunnels or slopes these bedding planes may cause structurally controlled instability.	70 60	A			
B. Sand- stone with stone and stitstone layers of siltstone amounts S. Sand- stone and siltstone or silty shale with sand- stone layers stone layers layers		50 B 40	C [E E	
C.D.E. and G - may be more or less folded than illustrated but this does not change the strength. Tectonic deformation, faulting and loss of continuity moves these categories to F and H.			30	F 20	
G. Undisturbed silty or clayey shale with or without a few very thin sandstone layers H. Tectonically deformed silty or clayey shale forming a constitution of clay. Thin layers of sandstone are transformed into small rock pieces.			\$	/ 	10
─────────────────────────────────────					DATE: 8-19-16

			ĺ		PROJECT REFERENCE NO	. SHEET NO.
					SF-280100	6
720			\bigcap			720
17.2.0			$oldsymbol{ u}$			720
710						7.10
()	EMBANKMENT: Asph	alt and AF	C Stone			
			0.0110			
BROADWAY I	EMBANKMENT: orang	ge-brown,	dark gray-bro	wn,and gr	een, moist, medium dense,	
	silty	SAND (A-	-2-4) WITN IITTI	e to trace	gravel	700
700			-	<u>SS-2</u>		700
		EBI-		BI-B		
		15+0		5+05		
		6'L	 	6′RT - ——	A	
690						690
	/ B)	15 - 1	B (21)—		B) \\EXI	STING GROUND
				<u> </u>		
		(13)—	(4)—		\overline{C}	
680	(C) (9	03/18	U	6.80
			(C) (G)			
	(D)	\Box				
		0.9		11 100/	(D)	
670	(E)	0.9	E 60/0.D	BT/	7-	6.7.0
	77-7760	0/0.0	=7/// (!	1) — //	H	
	\overline{G}	FIAL	(G)			
660 CALLUVIAL:	gray, wet to saturated	d,soft to si	iff.sandy SILT	(A-4) wi	th little clay	660
DRESIDUAL:	dark gray-green an	d orange-	brown, dry to i	moist,stiff	to hard, saprolitic, sandy S	ILT (A-4)
650 EWEATHER	E D ROCK: (Meta-Gra	nodiorite).	FWE	ATHERED	ROCK: (Meta-Microdiorite)	650
©CRYST ALLI	NE ROCK: (Meta-Gra	nodiorite)	HCR	ST ALLINE	ROCK: (Meta-Microdiorite.)
640						640
Note: Existing gro	ound-line generated along ted onto the bent line.	End Bent If	rom B5776_Ls_tnl.ti		hy shown is drawn through offse	et borings
Bent skew = 90°						
HORIZ. SCALE 0 $(FEET)$	10	20	VE = 1:1	BF	RIDGE NO. 100 (END I	BENT 1)
	· · · · · · · · · · · · · · · · · · ·					

	PROJECT REFERENCE NO. SHEET NO.
	SF-280100 7
740	740
\mathbf{E}	7.10
	700
ALLUVIAL: brown to gray, wet to saturated, very soft, silty CLAY	700 (A-7-5) with some sand
SS-18 SS-19 RS-1	
690 BI-A BI-B 15+57 I5+57	690
(A) 5'LT 5'RT	EXISTING GROUND
680 B WOR B 2 (C) 3 (C) 4	(B)
670 D 77 000/0.8 C 60/0.0 F 60/0.0 F	Ec. 98%
660 G	EC.98% 00.37%
650 BT FIAD BT FIAD BALLUVIAL: gray, wet to saturated, very soft to soft, moderately of	G) (G) (G) (650) (G) (G) (G) (G) (G) (G) (G) (G) (G) (G
organic, highly sandy, clayey SILT (A-5) 640 C ALLUVIAL: gray, saturated, soft, sandy SILT (A-4) with little cla	640
DRESIDUAL: gray-green, saturated, hard, saprolitic, sandy SILT rock fragments 630 EWEATHERED ROCK: (Meta-Microdiorite)	(A-4) with little to trace gravel sized 630 CRYST ALLINE ROCK: (Meta-Granodiorite)
F) CRYST ALLINE ROCK: (Meta-Microdiorite) 620	graphy shown is drawn through offset borings
HORIZ. SCALE 0 10 20 VE - 1.1	BRIDGE NO. 100 (BENT 1)
(FEET)	2112 02 110.100 (22111 1)

1	PROJECT REFERENCE NO. SHEET NO.
	SF-280100 8
710	710
Y .	7.10
	
_ <u>_</u> _	
700	700
(A) ALLUVIAL: brown, wet to saturated, very soft, silty CLAY $(A-7-5)$ v	
[SS-15]	
SS-17 RS-2 SS-13	
690 B2-A B2-B	690
16+27 16+27	EXISTING GROUND
(A) 5'LT 5'RT	
	_
	© 680
eta eta eta eta eta	
	\bigcirc
670 (F) - 83 - 00/0.8	670
- 60/0.0 E	<u>(E)</u>
F REC.100X RQD.12X GSI.75-80	<u>=</u> ///
G REC. 962	x 2
660 (G) REC. 96X (ADD. 65X (S) RO-95	660
	(F)
G REC: 90 ROD: 65 ROD:	 % % (G)
650 BT BT FIAD FIAD	650
$egin{array}{c} B \ m{ALLUVIAL:} \ gray, saturated, very \ soft \ to \ stiff, sandy \ SILT \ (A-4) \ w. \end{array}$	ith trace organics and gravel
C ALLUVIAL: brown to gray, wet to saturated, very soft to soft, sand	y SILT (A-4) with some clay and little
640 organics	640
\bigcirc RESIDUAL: gray-green to brown, dry, hard, sandy SILT (A-4)	
E WEATHERED ROCK: (Meta-Granodiorite)	
630	630
(F) CRYST ALLINE ROCK: (Meta-Granodiorite)	CRYSTALLINE ROCK: (Meta-Microdiorite)
Note: Existing ground-line generated along Bent 2 from B5776_Ls_tnl.tin. Stratign	raphy shown is drawn through affect bariage
620 Note: Existing ground-line generated along Bent 2 from B5/16-LS_thi.tin.Stratign with both projected onto the bent line. Bent skew = 90°	620
HORIZ. SCALE 0 10 20 $VE = 1:1$	BRIDGE NO. 100 (BENT 2)
(FEEI)	· - · · · · · · · · · · · · · · · ·

		1			REFERENCE NO.	SHEET NO.
				SF	-280100	9
700						700
720		C				720
		\mathbf{L}				
710						7.10
(A) ROADWAY EMBANKMEN	NI: Asphalf & ABC	: Stone				
B ROADWAY EMBANKME	NT: aray-brown,m	oist.medium de	nse.silty S	SAND (A-2-	-4)with some ar	avel
700	<i>y</i>		Í		J	700
		۸				
	EB2		32-B 6+91			
	(A) 6'L	T (5′RT 	A		
690				<u> </u>	EXIS	690 TING GROUND
/ /	B = B	(B) ₍₁₈₎ —		(B)		
					· — —	
680	9)—	03/18 3				680
C	(3)—	© ₍₅₎	-	<u>C</u>		
670		4	-			670
777-7	7 (60/0.0) BT	7/60/0.	BT _			
(E)	,	(E)	FĨĀØ <u> </u>	/// <u> </u>		
		O		`		
660 (C) RESIDUAL: gray, moist i	to saturated,soft t	o medium stiff	sandy Sli	<u>'</u> T (A-4) wi	th little clay	660
_			•		•	
D WEATHERED ROCK: ()	Meta-Granodiorite)					
650 CDYSTALLING BOOK						650
(E) CRYSTALLINE ROCK: (Meta—Granoatorite.)				
640						640
						000
630 Note: Existing ground-line genero with both projected onto the b Bent skew = 90°	ated along End Bent 2 bent line.	from B5776_Ls_tnl.t	in. Stratigra	phy shown is d	rawn through offse	t borings 630
HORIZ. SCALE 0 1	10 20	VE = 1:1	BR	RIDGE NO	D. 100 (END B	ENT 2)

											RE L		T			
	17BP					SF-28					AVIDSC		GEOLOGIST Shipman	n, M.	1	
				ge No. 10) (Clodfelt	er Rd.) over	_			T		-	ND WTR (f
	NG NO.						15+57			+	FSET 5		ALIGNMENT -L-		0 HR.	N/
	AR EL			5 01 8 6 1			PTH 32.			NO	RTHING	789,119	EASTING 1,654,872	Luanma	24 HR.	FIA
				E SUIVIB1	1		95%11/30/2			_			V Casing W/SPT & Core			Automatic
	LER G		z, L.				TE 03/2			CO	MP. DA	TE 03/29/18	SURFACE WATER DE	PTH N/	Α	
	E SIZE	1	1	DRILL		AL RU	N 15.0 ft		RATA	١.						
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	LOG	ELEV. (DESCRIPTION AND REMAR	RKS		DEPTH
667.4	667.4	17.4	5.0	2:28/1.0	(4.9)	(3.8)		(14 9)	(13.2)		667.4		Begin Coring @ 17.4 ft CRYSTALLINE ROCK			1
665	662.4	22.4	0.0	1:28/1.0 1:44/1.0 1:36/1.0 1:56/1.0	98%	76%		99%	(13.2) 88%		- - - -	white, gray, and bla close fr	ack, slight to v. slight weather acture spacing, META-GRA GSI = 80-85	ring, hard,	close to r TE	
660	002.4	+ 	5.0	1:32/1.0 1:45/1.0	(5.0) 100%	(4.8) 96%					- -					
	657.4	27.4		1:41/1.0 1:53/1.0 2:13/1.0							- -					
655	-	+	5.0	1:42/1.0 1:45/1.0 1:59/1.0	(5.0) 100%	(4.6) 92%					- - -					
-	652.4	32.4		1:53/1.0 1:49/1.0							- 652.4 -	Boring Term	inated at Elevation 652.4 ft in	n Crystallir	ne Rock	3
	-	Ŧ									_		(Meta-Granodiorite)			
		Ŧ									- -	-	Boring drilled through bridge	deck.		
	-	‡									-					
		‡									-					
		‡									- -					
	-	‡									-					
		‡									- -					
	-	‡									-					
		‡									-					
		Ŧ									- -					
	_	Ŧ									-					
		Ŧ									-					
	-	Ŧ									_					
		Ŧ									-					
		Ŧ									- -					
	-	Ŧ									-					
		Ŧ									=					
	-	Ŧ									_					
		Ŧ									-					
		Ŧ									=					
	_	Ŧ									-					
		Ŧ									=					
	_	Ŧ									_					
		Ŧ									-					
		Ŧ									_ _					
	-	Ŧ									-					
		Ŧ									- -					
	-	Ŧ									-					
		Ŧ									-					
		Ŧ									- -					
	-	‡									-					
		†							<u> </u>		-					

										Uł	RE L	UG								
	17BP.9					SF-28					AVIDSC				GEOLOG	IST S	Shipman	, M.		
SITE	DESCRI	PTION	Bridg	ge No. 10	_		(Clodfelt	er Rd.) over	Abbo	tts Cree	k		,					1	ID WTR (ft)
BORI	NG NO.	B1-B			STA	TION	15+57			OF	FSET !	5 ft RT			ALIGNME	ENT -	L-		0 HR.	N/A
	AR ELE						PTH 38.			NO	RTHING	789,11			EASTING				24 HR.	FIAD
DRILL	.RIG/HAM	MER EF	F./DATI	E SUM31	23 CME	-550X 9	95%11/30/2	2017				DRILL M	IETHOD	NWC	asing W/SF	T&Con	e	HAMM	ER TYPE	Automatic
DRIL	LER G	onzalez	, L.		STAI	RT DA	TE 03/2	7/18		СО	MP. DA	TE 03/2	27/18		SURFAC	E WAT	ER DEF	PTH N/	A	
CORE	SIZE	NQ-2					V 22.3 f													
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	DRILL RATE (Min/ft)	REC. (ft)	JN RQD (ft) %	SAMP. NO.	STR REC. (ft) %	RQD (ft) %	L O G	ELEV. (ft)		DE	SCRIPTIO	N AND	REMARI	KS		DEPTH (1
668.9 665	668.9 667.7 - 666.6 -	- 16.5 - 18.8 - 18.8	1.2	N=60/0.0 2:28/1.0 1:26/0.2 2:08/1.0	(1.0) \ <u>83%</u> (1.0)	(0.0) 0% (0.3)		(12.0) 98%	(4.5) 37%		_ 668.9 -	dark r	moderate	ely clos	Begin Co CRYST oderate to se fracture	ALLINE slight w spacing	ROCK reathering J, META-	MICROD	ery close	16. to
003	661.6 -	- - - 23.8	5.0	2:08/1.0 0:36/0.1 1:54/1.0 1:31/1.0 1:53/1.0 1:56/1.0 3:05/1.0	/II a1% /	\27% (0.8) 16%					 - -		ľ	Meta-G	Granodiorite GS	e intrusi SI = 70-7		·25.8 ft.).		
660	656.6 -	- 28.8	5.0	3:05/1.0 2:04/1.0 1:30/1.0 2:31/1.0 2:24/1.0	(5.0) 100%	(3.4) 68%	RS-1				- - - - 656.6									28
655	- - - 651.6 -	- - - 33.8	5.0	2:11/1.0 1:45/1.0 1:49/1.0 1:42/1.0 2:12/1.0 2:40/1.0	(4.4) 88%	(4.4) 88%		(9.4) 94%	(8.1) 81%		- - - -			close	ck, slight to fracture sp iclusions o GS	acing, N	NETA-GF Microdior	RANODIC		
650	646.6 -	- - -	5.0	2:22/1.0 3:02/1.0 2:37/1.0 2:00/1.0	100%	(3.7) 74%					- - - - - 646.6									20
	- 040.0	- 30.0 - -		1:47/1.0							- 040.0 - -		Boring T		ated at Elev (Meta- oring drilled	Granod	liorite)		ne Rock	38.
														- Cas	sing Advand	cer refu	sal at 16	.5 feet.		

WBS	17BP.	9.R.10 ²	1		TIP	SF-28	0100	С			RE L		GEOLOGIST Shipman	n, M.		
				ge No. 100									1 ,		GROU	ND WTR (ft
	NG NO.						16+27		,	_	FSET (ALIGNMENT -L-		0 HR.	N/A
	AR ELI						PTH 33.	7 ft		_		789,059	EASTING 1,654,909		24 HR.	FIAD
				E SUM31:	l							DRILL METHOD NW		HAMM		Automatic
DRILI	LER G	onzalez	. L.		STAF	RT DA	TE 03/2	8/18		СО	MP. DA	TE 03/29/18	SURFACE WATER DE	PTH N/	Α	
	SIZE		,				N 18.0 f						1		•	
ELEV	RUN	DEPTH	RUN	DRILL		JN	SAMP.		ATA	L						
(ft)	ELEV (ft)	(ft)	(ft)	RATE (Min/ft)	(ft) %	(ft)	NO.	(ft) %	(ft) %	O G	ELEV. (ESCRIPTION AND REMAR	KS		DEPTH (
669.3												•	Begin Coring @ 15.7 ft			
	669.3	15.7	3.0	N=60/0.0 2:52/1.0 3:04/1.0 1:57/1.0	(3.0) 100%	(2.3) 77%	RS-2	(3.9) 100%	(2.8) 72%		669.3	gray, white, and	CRYSTALLINE ROCK black, slight weathering, har	d, very clo	se to clos	15 se
665	666.3	18.7	4.1	1:57/1.0	(4.1)	(1.8) 44%					- 665.4	fractu	ure spacing, META-GRANO GSI = 75-80	DIORITE.		19
	-	Ŧ		2:00/1.0 3:03/1.0 4:23/1.0	100%	44%		(13.6) 96%	(9.2) 65%		-	gray, white, and blac	ck, slight to fresh weathering close fracture spacing, MET	hard to v	ery hard,	close
	662.2 661.3	22.8	0.9] 4:54/1.0 \ 1:18/0.1 /		(0.0)					-	to moderatory t	GSI = 80-85		DIOTATE.	
660	_	Ŧ	5.0	3:12/0.9 4:03/1.0	89% (4.6)	(3.8)					_					
		1		4:03/1.0 3:51/1.0 4:15/1.0 3:54/1.0 3:48/1.0	92%	76%					_					
655	656.3	28.7	5.0	3:48/1.0 2:54/1.0 3:11/1.0	(5.0)	(4.1) 82%					_					
	-	Ī		3:41/1.0	100%	82%					_					
	651.3	33.7		3:29/1.0 2:53/1.0							651.3			0 1 11:	D 1	33
	-	<u> </u>									_	Boring Termi	nated at Elevation 651.3 ft ir (Meta-Microdiorite)	Crystallir	1е коск	
		‡									-		Boring drilled through bridge			
	-	<u> </u>									-	- C	asing Advancer refusal at 15	.7 feet.		
		‡									- -					
		‡									-					
	-	‡									_					
		‡									-					
	-	‡									-					
		‡									<u>-</u>					
		‡									-					
	-	‡									- -					
		‡									-					
	_	‡									- -					
	-	‡									- -					
		‡									-					
	-	‡									- -					
		‡									- -					
	-	‡									-					
	•	‡									-					
		‡									-					
	-	‡									-					
		‡									- -					
	-	‡									- -					
	•	‡									-					
		‡									-					
	-	‡									-					
		‡									-					
	-	‡									_					
		‡									-					
		‡									-					
	-	 									_					

WBS	17BP.	9 R 101	1		TIP	SF-28	.0100	С			RE L		GEOLOGIST Shipma	n M		
				ge No. 10									OLOLOGIOT OHIPITIA	11, IVI.	GROUN	ND WTR (f
	NG NO.		טווענ	JO 190. 101			16+27	or i.u.	, ovei	_	FSET !		ALIGNMENT -L-		0 HR.	N/.
	AR ELI		11 2 ft				PTH 33.	n ft		+		789,054	EASTING 1,654,900		24 HR.	FIAI
				E SUM31	1					INC	KIHING		WCasing W/SPT & Core	НАММ		Automatic
										CC	MD DV.	TE 03/28/18	1			7 Idio I Edio
	LER G		., L.				TE 03/2				JIVIP. DA	03/20/10	SURFACE WATER DE	PIN N/	Α	
	RUN	1	I	DRILL	RI	JN	N 16.3 ft	STF	RATA	1						
ELEV (ft)	RUN ELEV (ft)	DEPTH (ft)	RUN (ft)	RATE (Min/ft)	REC. (ft) %	RQD (ft) %	SAMP. NO.	REC. (ft) %	RQD (ft) %	Ö G	ELEV. (DESCRIPTION AND REMAR	RKS		DEPTH
667.6	667.6 - 666.3	18.7	1.3	N=60/0.0	(1.1)	(0.9)		(12.7)	(10.9)		- 667.6		Begin Coring @ 16.7 ft CRYSTALLINE ROCK			16
665	- - -	-	5.0	N=60/0.0 1:00/0.3 3:02/1.0 2:42/1.0 3:21/1.0 2:57/1.0 3:35/1.0	85% (4.7) 94%	(3.7) (3.7) 74%		95%	(10.9) 81%			gray and white, v. frac	slight weathering to fresh, h ture spacing, META-GRANC GSI = 80-85	ard, close t	to mod. cl	
660	661.3	23.0	5.0	3:22/1.0 3:35/1.0 3:24/1.0 3:48/1.0 4:20/1.0 4:28/1.0	(4.8) 96%	(4.4) 88%										
655	656.3 ⁻ 655.2	28.0 29.1	1.1	5:22/1.0 5:01/1.0 0:54/0.1	(1.1)	(1.1)					F					
	-	F	3.9	0:54/0.1 4:53/0.9	(3.6)	(100%) (2.7)		(2.6) 90%	(1.9) 66%	É	654.2	gray, white, and	black, slight weathering, hard	d to very ha	ard, close	to 30
	651.3 ⁻	33.0		4:53/0.9 4:43/1.0 4:57/1.0 5:37/1.0	(3.6) 92%	69%		90%	66%		651.3	moderately o	close fracture spacing, META GSI = 75-80	-MICRÓD	IORITE.	3:
	-	-		0.017110							- -	Boring Term	ninated at Elevation 651.3 ft i (Meta-Microdiorite)	n Crystallir	ne Rock	
		Ŧ									F	-	Boring drilled through bridge	e deck.		
	_	‡									Ė.					
		‡									_					
		ŧ									_					
	_	+									-					
		‡									Ι.					
	-	t									-					
	_	Į.									<u>L</u>					
	-	ł									-					
		‡									-					
	-	ł									F					
		Ī									F					
	-	†									-					
	-	Į									F					
	_	+									-					
		Ŧ									F					
	-	t									L					
	_	Ŧ									Ę.					
	-	t									L					
		Ŧ									F					
	-	‡									L					
	-	+									F					
		‡									Ė					
	-	+									F					
	-	İ														
	-	t									-					
	-	Į.									ļ.					
	_	+									-					
		Ŧ									F					
		t									L					
	_	Ŧ									F					
		İ									Ľ					
		Į									F					
	-	t									L					
		F									F					
		İ									t					
		+									F					
	-	‡									L					
		Ι	1	1	1						L					

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAY MATERIALS & TESTS UNIT SOILS LABORATORY

1.1. P. NO. SF-200100	T. I. P.	No.	SF-280100
-----------------------	----------	-----	-----------

REPORT ON SAMPLES OF	Bridge 100 or	1 SR 1810 over	Abbotts Creek
----------------------	---------------	----------------	---------------

Project	17BP.9.R.101	County	Davidson		Owner	B. Worley, PG
Date: Sampled	3/26/18 to 3/29/18	Received	4/20/18		Reported	4/26/18
Sampled from	Roadway and Structu	re		By	B. Worley	, M. Shipman
Submitted by	B. Worley				2008	Standard Specifications

4/26/18

TEST RESULTS

Proj. Sample No.	SS-2	SS-8	SS-13	SS-15	SS-17	SS-18
Boring No.	EB1-B	B1-B	B2-B	B2-A	B2-A	B1-A
Retained #4 Sieve %	0	0	0	0	0	0
Passing #10 Sieve %	98	100	100	100	99	100
Passing #40 Sieve %	93	97	98	95	89	98
Passing #200 Sieve %	44	69	70	79	62	75

MINUS NO. 10 FRACTION

SOIL MORTAR - 100%							
Coarse Sand Ret - #60	%	11.3	5.8	5.6	5.7	13.5	4.2
Fine Sand Ret - #270	%	57.0	37.0	32.2	26.1	47.3	30.9
Silt 0.05 - 0.005 mm	%	14.5	41.2	25.4	39.0	35.1	34.8
Clay < 0.005 mm	%	17.1	16.1	36.8	29.1	4.1	30.1
Passing #40 Sieve	%	95.0	97.5	97.9	95.3	90.2	97.9
Passing #200 Sieve	%	44.4	68.8	70.1	79.2	63.3	75.4

L. L.	20	42	31	48	27	45
P. I.	0	6	9	16	0	13
AASHTO Classification	A-4	A-5	A-4	A-7-5	A-4	A-7-5
Group Index	0	5	5	14	0	11
pН	N/A	N/A	N/A	N/A	N/A	N/A
Station	15+05	15+57	16+27	16+27	16+27	15+57
OFFSET	6'RT	5'RT	5'RT	5'LT	5'LT	5'LT
ALIGNMENT	-L-	-L-	-L-	-L-	-L-	-L-
Depth (Ft)	8.7	0.0	6.7	0.0	12.5	0.0
t	o 10.2	1.5	8.2	1.5	14.0	1.5
Natural Moisture %	26.6	50.2	36.2	55.9	14.7	54.0

Soils Engineer

NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

DIVISION OF HIGHWAY MATERIALS & TESTS UNIT SOILS LABORATORY

T. I. P. No.	SF-280100	•					
	REPORT ON SAMI	PLES OF	Bridge 100 o	n SR 18	10 over Ab	botts Creel	ζ
Project	17BP.9.R.101	County	Davidson		Owner	B. Worley	, PG
Date: Sampled	3/26/18 to 3/29/18	Received	4/20/18		Reported	4/26/18	
_	Roadway and Structu	-		Ву	-	, M. Shipm	ıan
Submitted by	B. Worley			•		Standard Sp	
Susmitted by	2. Worley					- Sumuar a Sp	ecinications
4/26/18		TE	ST RESULT	S			
Proj. Sample N	0.	SS-19					
Boring No.		B1-A					
Retained #4 S		0					
Passing #10 S		100					
Passing #40 S		97					
Passing #200 S	Sieve %	67					
		MINUS	NO. 10 FRAC	TION		•	
SOIL MORTA			ļ				
Coarse Sand		7.5	ļ				
Fine Sand Re		32.4	<u> </u>				
Silt 0.05 - 0.0		8.3	 				
Clay < 0.005		51.8	 				
Passing #40 S Passing #200 S	ieve %	97.0 67.4	 				
Passing #200 S	oleve %	0/.4					
L. L.		40	T		<u> </u>		
P. I.		13	† †				
AASHTO Clas	sification	A-6	1				
Group Index		8	†				
pН		N/A	† †				
Station		15+57	1				
OFFSET		5'LT					
ALIGNMENT		-L-					
Depth (Ft)		2.3					
	to	3.8					
Natural Moisture	2 %	90.4					

Soils Engineer

ROCK CORE UNIAXIAL COMPRESSIVE STRENGTH TEST ASTM D-7012-10 METHOD C

Job No.: G17017.03 Job Name: SF-280100 Bridge 100

Date: 5/7/2018 Sample No.: RS-1
Boring No.: B1-B Depth (ft): 24.2-24.6

Description:

1728

 Length (in.):
 3.927 Volume (in³):
 12.03053615

 Diameter (in.):
 1.975 Volume (cf):
 0.006962116

 Area (sq. in.):
 3.064 Unit Weight (pcf):
 186.3744

Compressive Strength (psi): 16220

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
<u>Deflection (in.)</u>	<u>Strain (70)</u>	<u>Load (lbf)</u>	<u>Sirengin (psi)</u>	<u>iviodulus (psi)</u>
0.000	0.000	0	0.0	
0.005	0.127	6950	2268.6	1,781,770
0.010	0.255	18730	6113.8	2,400,903
0.015	0.382	33920	11072.1	2,898,688
0.020	0.509	49130	16037.0	3,148,862
0.021	0.535	49690	16219.8	3,033,099
0.030	0.764		0.0	0
0.035	0.891		0.0	0
0.040	1.019		0.0	0
0.045	1.146		0.0	0
0.046	1.171		0.0	0
0.055	1.401		0.0	0
0.060	1.528		0.0	0
0.065	1.655		0.0	0
0.070	1.783		0.0	0

Notes:

Young's modulus is calculated using the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012.

Length: Diameter Ratio = 1.99 due to lack of available sample.

NCDOT Cert No. 105-02-0803

ROCK CORE UNIAXIAL COMPRESSIVE STRENGTH TEST ASTM D-7012-10 METHOD C

Job No.: G17017.03 Job Name: SF-280100 Bridge 100

Date: 5/7/2018 Sample No.: RS-2 Boring No.: B2-A Depth (ft): 17.0-17.7

Description:

1728

 Length (in.):
 2.283 Volume (in³):
 7.015334239

 Diameter (in.):
 1.978 Volume (cf):
 0.0040598

 Area (sq. in.):
 3.073 Unit Weight (pcf):
 164.5204

Compressive Strength (psi): 3544

			Compressive	Young's
Deflection (in.)	Strain (%)	Load (lbf)	Strength (psi)	Modulus (psi)
0.000	0.000	0	0.0	
0.005	0.219	1410	458.9	209,514
0.010	0.438	3050	992.6	226,602
0.015	0.657	6170	2007.9	305,603
0.020	0.876	8350	2717.3	310,184
0.023	1.007	10890	3543.9	351,774
0.030	1.314		0.0	0
0.035	1.533		0.0	0
0.040	1.752		0.0	0
0.045	1.971		0.0	0
0.046	2.015		0.0	0
0.055	2.409		0.0	0
0.060	2.628		0.0	0
0.065	2.847		0.0	0
0.070	3.066		0.0	0

Notes:

Young's modulus is calculatied using the secant modulus at each data interval per Figure 2 (C) in ASTM D 7012.

Length: Diameter Ratio = 1.15 due to lack of available sample.

Michael J Bruer
NCDOT Cert No. 105-02-0803

B1-A BOXES 1 & 2: 17.4 - 32.4 FEET

B1-BBOXES 1 through 3: 16.5 - 38.8 FEET

B2-ABOXES 1 & 2: 15.7 - 33.7 FEET

B2-B BOXES 1 & 2: 16.7 - 33.0 FEET

SITE PHOTOGRAPHS

Bridge No. 100 on SR 1810 (Clodfelter Road) over Abbotts Creek

Standing at End Bent 1 and looking south

Standing at End Bent 2 and looking north